Chloride Iodide
A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles- anticonvulsant, plasma etching, solvent- grignard reagent, crystal formation, etc. [3] Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption. See potassium bromide. The bromide ion has an ionic radius of 196 pm.[4]
Bromide is present in typical seawater (35 PSU) with a concentration of around 65 mg/L, which is about 0.2% of all dissolved salts. Seafood and deep sea plants generally have higher levels than land-derived foods. Bromargyrite—natural, crystalline silver bromide—is the most common bromide mineral known but is still very rare. In addition to silver, bromine is also in minerals combined with mercury and copper.[5]
Bromide salts of alkali metal, alkaline earth metals, and many other metals dissolve in water (and even some alcohols and a few ethers) to give bromide ions. The classic case is sodium bromide, which fully dissociates in water:
Hydrogen bromide, which is a diatomic molecule, takes on salt-like properties upon contact with water to give an ionic solution called hydrobromic acid. The process is often described simplistically as involving formation of the hydronium salt of bromide:
Bromine readily reacts with water, i.e. it undergoes hydrolysis:
This forms hypobromous acid (HOBr), and hydrobromic acid (HBr in water). The solution is called "bromine water". The hydrolysis of bromine is more favorable in the presence of base, for example sodium hydroxide:
This reaction is analogous to the production of bleach, where chlorine is dissolved in the presence of sodium hydroxide.[6]
One can test for a bromide ion by adding an oxidizer. One method uses dilute HNO3.
Balard and Löwig's method can be used to extract bromine from seawater and certain brines. For samples testing for sufficient bromide concentration, addition of chlorine produces bromine (Br2):[7]
Bromide's main commercial value based on value and quantity is its use in producing organobromine compounds, which themselves are rather specialized. Organobromine compounds are mainly used as fire retardants, and even these applications are controversial. Many metal bromides are produced commercially, including LiBr, NaBr, NH4Br, CuBr, ZnBr2 and AlBr3. Some applications are for silver-based photography, which is fading in value, and drilling fluid, which calls for generic, dense compounds and thus is of little value.[8]
Lithium bromide was used as a sedative beginning in the early 1900s. However, it fell into disfavour in the 1940s due to the rising popularity of safer and more efficient sedatives (specifically, barbiturates) and when some heart patients died after using a salt substitute (see lithium chloride).[9] Like lithium carbonate and lithium chloride, it was used as a treatment for bipolar disorder.
Bromide compounds, especially potassium bromide, were frequently used as sedatives in the 19th and early 20th centuries. Their use in over-the-counter sedatives and headache remedies (such as Bromo-Seltzer) in the United States extended to 1975 when bromides were withdrawn as ingredients due to chronic toxicity.[10] This use gave the word "bromide" its colloquial connotation of a comforting cliché.[11]
It has been said that during World War I, British soldiers were given bromide to curb their sexual urges.[12] Lord Dunsany mentions a soldier being given bromide as a sedative for nervous exhaustion and overwork in his play Fame and the Poet (1919).[13]
Bromide salts are used in hot tubs as mild germicidal agents to generate in situ hypobromite
The bromide ion is antiepileptic and as bromide salt, is used in veterinary medicine in the US. The kidneys excrete bromide ions. The half-life of bromide in the human body (12 days) is long compared with many pharmaceuticals, making dosing challenging to adjust (a new dose may require several months to reach equilibrium). Bromide ion concentrations in the cerebrospinal fluid are about 30% of those in blood and are strongly influenced by the body's chloride intake and metabolism.[14]
Since bromide is still used in veterinary medicine in the United States, veterinary diagnostic labs can routinely measure blood bromide levels. However, this is not a conventional test in human medicine in the US since there are no FDA-approved uses for the bromide. Therapeutic bromide levels are measured in European countries like Germany, where bromide is still used therapeutically in human epilepsy.
Bromide is rarely mentioned in the biochemical context. Some enzymes use bromide as substrate or as a cofactor.
Bromoperoxidase enzymes use bromide (typically in seawater) to generate electrophilic brominating agents. Hundreds of organobromine compounds are generated by this process. Notable exampless are bromoform, thousands of tons of which are produced annually in this way. The historical dye Tyrian purple is produced by similar enzymatic reactions.[15]
In one specialized report, bromideis an essential cofactor in the peroxidising catalysis of sulfonimine crosslinks in collagen IV. This post-translational modification occurs in all animals and bromine is an essential trace element for humans.[16]
Eosinophils need bromide for fighting multicellular parasites. Hypobromite is produced via eosinophil peroxidase, an enzyme that can use chloride but preferentially uses bromide.[17]
The average concentration of bromide in human blood in Queensland, Australia, is 5.3± 1.4 mg/L and varies with age and gender.[18] Much higher levels may indicate exposure to brominated chemicals. It is also found in seafood.
post code | city | state | latitude | longitude |
---|---|---|---|---|
74530 | Bromide | OK | 34.420249 | -96.491918 |